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KeY-ABS is an interactive (semi-automatic) deductive verification tool that enables one to
verify functional properties for concurrent and distributed ABS models with unbounded size.
In this tutorial we demonstrate in detail how to specify and verify ABS applications. We
strongly encourage reading this tutorial next to a computer with a running KeY-ABS system.
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1 Introduction

KeY-ABS is a variant of the verification system KeY for sequential Java/JavaCard. It is based
on the KeY 2.0 platform - a verification system for Java. We generalize various subsystems
of KeY and abstract away the Java specifics. After refactoring the KeY system provides core
subsystems (rule engine, proof construction, search strategies, specification language, proof
management etc.) that are independent of the specific program logic or target language. These
are then extended and adapted by the ABS and Java backends.

KeY-ABS is designed for the verification of concurrent and distributed ABS models. By
following this tutorial, readers should be able to execute KeY-ABS on their own machine,
reproduce the proof of the example, and understand what KeY-ABS can do. Sufficient back-
ground knowledge and references are provided so the readers can understand the technicality
of how the tool works.

2 Tool Installation

For a local installation of the KeY-ABS theorem prover, install Java 8. Then, download KeY-
ABS from http://heim.ifi.uio.no/~crystald/key-abs.zip. Unzipping the downloaded
file and double-clicking on the key.jar file should start KeY-ABS. To start it from the command
line, enter the directory key-abs and use:

java − j a r key . j a r

3 System Workflow

The input files to KeY-ABS comprise (i) an .abs file containing ABS program and (ii) a .key
file containing class invariants, functions, predicates and problem specific rules required for
this particular verification case. Given these input files, KeY-ABS opens a proof obligation
selection dialogue that lets one choose a target method implementation. From the selection the
proof obligation generator creates an ABSDL formula, which will be explained in Section 4. By
clicking on the Start icon the verifier will try to automatically prove the generated formula. A
positive outcome shows that the target method preserves the specified class invariants. In the
case that a subgoal cannot be proved automatically, the user is able to interact with the verifier
to choose proof strategies and proof rules manually. The reason for a formula to be unprovable
might be that the target method implementation does not preserve one of the class invariants,
that the specified invariants are too weak/too strong or that additional proof rules are required.
The workflow of KeY-ABS is illustrated in Fig. 1.

4 ABS Dynamic Logic

Specification and verification of ABS models is done in ABS dynamic logic (ABSDL). ABSDL
is a typed first-order logic plus a box modality: For a sequence of executable ABS statements S
and ABSDL formulae P and Q, the formula P→ [S]Q expresses: If the execution of S starts in a
state where the assertion P holds and the program terminates, then the assertion Q holds in the
final state. Given an ABS method m with body mb and a class invariant I, the ABSDL formula
I → [mb]I expresses that the method m preserves the class invariant. In sequent notation
P→ [S]Q is written

Γ,P ` [S]Q,∆

http://heim.ifi.uio.no/~crystald/key-abs.zip
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Figure 1: Verification workflow of KeY-ABS

where Γ and ∆ stand for (possibly empty) sets of side formulae. A sequent calculus as realized
in ABSDL essentially constitutes a symbolic interpreter for ABS. For example, the assignment
rule for local program variables is

assign
Γ ` {v := e}[rest]φ,∆

Γ ` [v = e; rest]φ,∆

where v is a local program variable and e is a pure (side effect-free) expression. This rule
rewrites the formula by moving the assignment from the program into a so-called update [1],
as {v := e} shown above, which captures state changes. The symbolic execution continues with
the remaining program rest. Updates can be viewed as explicit substitutions that accumulate
in front of the modality during symbolic program execution. Updates can only be applied to
formulae or terms. Once the program to be verified has been completely executed and the
modality is empty, the accumulated updates are applied to the formula after the modality,
resulting in a pure first-order formula. This is shown by the following rule emptybox.

emptyBox
Γ ` Uφ,∆

Γ ` U[]φ,∆

The rule for the conditional splits the proof into two branches; one for the case where its guard
b evaluates to true (and the conditional’s then-block is executed), the other for the case where
b evaluates to false.

ifElse
Γ ` U(b → [s1; rest])φ,∆ Γ ` U(¬b → [s2; rest])φ,∆

Γ ` U[if b then s1 else s2; rest]φ,∆

More reasoning rules will be introduced along the tutorial.

5 Example

In this tutorial, we use a banking example written in ABS to illustrate how specifications can
be written and how programs are verified by KeY-ABS. The source code of the example are
available at: http://folk.uio.no/crystald/BankingAccount_tutorial_code.zip. The zip
file contains the ABS banking module and two corresponding specification files.

http://folk.uio.no/crystald/BankingAccount_tutorial_code.zip


The file Account.abs is the ABS implementation of the model, in which the depositmethod
increases the balance of the bank account by an input amount x, and the withdraw method
decreases the balance by an input amount x if balance is at least x.

Listing 1 Banking example in ABS (Account.abs)

module Account;

interface Account {
Int deposit(Int x);
Int withdraw(Int x);

}

class AccountImpl(Int balance) implements Account {

Int deposit(Int x) { balance = balance + x; return balance;}

Int withdraw(Int x) {
if (balance − x >= 0) {

balance = balance − x;
}
return balance;

}
}

{ new AccountImpl(100); }

We specify an invariant for the AccountImpl class that “the balance is always positive”. Class
invariants are specified in the .key file. Listing 2 gives a template of .key files. It contains the
directory of the .abs file, the ABS module name, the ABS class, and a list of class invariants.
In addition, user-defined functions, predicates, proof rules and proof-obligation formulae may
also be included in the .key file.

Listing 2 .key file template

\absSource ‘‘abs_file_directory’’;

\module ‘‘module_name’’;

\class ‘‘module_name.class_name’’;

\invariants(Seq historySV, Heap heapSV, ABSAnyInterface self) {
invariant_name1 : module_name.class_name {...};
invariant_name2 : module_name.class_name {...};
...

}

\functions { ... }
\predicates{ ... }
\rules { ... }

The parameters of the \invariants section include a variable, historySV, of type Seq for
recording the history of communication; a variable, heapSV, of type Heap for storing the
state of fields; and a variable, self, of type ABSAnyInterface as the identity of the current class
instance. Each class invariant has a name and is formulated in the following format:

invariant_name : module_name.class_name { first_order_logic_formulae };

The invariant, “the balance is always positive”, of the AccountImpl class is specified in the
nonNegativeBalance.key file shown in Listing 3.



Listing 3 Specification of the bank account example (nonNegativeBalance.key)

\absSource ‘‘.’’;

\module ‘‘Account’’;

\class ‘‘Account.AccountImpl’’;

\invariants(Seq historySV, Heap heapSV, ABSAnyInterface self) {

nonNegativeBalance : Account.AccountImpl {
int::select(heapSV, self, Account.AccountImpl::balance) >= 0

};
}

Where the select function returns the value of the object field, i.e. balance, from the heap, i.e.
heapSV, of the current class instance, i.e. self.

5.1 Verifying the AccountImpl class against the nonNegativeBalance invariant

Start the KeY-ABS system (shown in Fig. 2). Click the icon and enter the directory of the un-
zipped example folder where the .abs and .key files are located. SelectnonNegativeBalance.key
file (see Fig. 3). A Proof-Obligation Browser window, shown in Fig. 4, will then pop up, by
which we select the withdraw method of AccountImpl. Then the KeY-ABS proof obligation
generator will generate an ABS Dynamic Logic (ABSDL) formula, shown in Fig. 5.

Listing 4 Proof obligation of the withdraw method

==>
\forall ABSAnyInterface caller;
( !caller = null
−>\forall int x_0;

{x:=x_0}
{history:=seqConcat(history,

seqSingleton(invocREv(caller,this,future,Account.Account::withdraw#ABS.StdLib.Int,
seqConcat(seqEmpty, seqSingleton(x)))))}

( wellformed(heap) & wfHist(history)& !this = null & Precondition & CInv(history, heap, this)
−> \[{ methodframe(source <− Account.Account::withdraw#ABS.StdLib.Int,

return <− (var:result,fut:future): {
if(this.balance + x >= 0) { this.balance = this.balance + x; }
return this.balance;

}
}\] CInv(history, heap, this)))

Listing 4 presents the generated ABSDL formula for the withdraw method. It expresses that
For any calling object caller and any input data x_0 of type int, if the caller is not null, the initial
history is wellformed, the class invariant is satisfied before executing withdraw and the execution of
withdraw terminates, the class invariant must be proven upon the termination of withdraw.

Now click the icon. The automatic proof system of KeY-ABS will then be triggered. The
proof obligation of the withdraw method can be automatically proved by KeY-ABS. This is
shown in Fig. 6, where a popped up window lists the number of nodes and branches in the
closed proof tree recorded on the left side of the window.

5.2 Open goals of the proof tree

Now follow the same procedure and try to prove the class invariant nonNegativeBalance
for the deposit method. You may notice that KeY-ABS cannot close the proof automatically.



Figure 2: Start of KeY-ABS.



Figure 3: Invariant selection.

Figure 4: Proof obligation browser.



Figure 5: Automated generated proof obligation.

Figure 6: Closed proof and statistics for method withdraw.



Figure 7: Open goal for proving deposit.

The open goal is shown in Fig. 7. To find out the reason why the proof cannot be closed,
we may check if the class invariant is too weak/too strong, or if additional proof rules are
required, or simply the method implementation is not correct. If we look closely to the
formula at the right side of the window, shown in Fig. 7, while encountering the open goal,
we notice that there is an assumption: x_0_0 <= −1. It expresses that the parameter x_0_0
of deposit method is not positive. The proof cannot be closed because the balance might
not stay positive upon the termination of deposit when the input parameter data is negative.
KeY-ABS symbolically generates two execution branches in the proof tree for deposit: one for
positive method parameter and one for negative method parameter. In order to prove that
the balance is still positive after executing deposit, we need to strengthen the class invariant
by specifying an additional property, i.e. the method parameter for deposit is always non-negative.
This is captured by the history-based class invariant, amountOfDepositNonNegative, shown
in Listing 5. History is a sequence of events recording the communication between objects.
History based verification of ABS can be found in [4].

Listing 5 Additional class invariant for the banking example

amountOfDepositNonNegative : Account.AccountImpl {
\forall HistoryLabel ev; (
\forall int i; ( i>= 0 & i<seqLen(historySV) −>
(ev = HistoryLabel::seqGet(historySV, i) &
(isInvocationEv(ev) | isInvocationREv(ev)) &

getMethod(ev) = Account.AccountImpl::deposit#ABS.StdLib.Int
−> int::seqGet(getArguments(ev), 0) >= 0 )

))
};

In Listing 5 the function seqLen(a) returns the length of the input sequence a. The function
seqGet(a,b) returns the elements of the input sequence a at index b. The predicates isInvo-
cationEv(ev) and isInvocationREv(ev) return true if the input event ev is an invocation event
and invocation reaction event, respectively. These two events records the method invocation
from the caller side and the starting of method execution at the callee side. The function
getMethod(ev) returns the method name contained in the event ev. The function getArgu-
ments(ev) returns the sequence of method parameters contained in the event ev. Method
names are expressed in the following format:



module_name.class_name::method_Name#type_of_parameter1, type_of_parameter2,...

where a list of method parameters and the names of interface and class that the method belong
to should be given. Class invariants are specified based on communication histories. This
additional class invariants literally expresses that for all the invocation events and invocation
reaction events for the deposit method, the method parameters contained in the events are
always larger and equal to zero.

The updated specification is written in amountOfDepositNonNegative.key, shown in List-
ing 6, which contains two class invariants, nonNegativeBalance and amountOfDepositNon-
Negative. By selecting amountOfDepositNonNegative.key and the deposit method, KeY-ABS
generates a proof obligation for deposit such that the conjunction of these two invariants should
be proven upon method termination.

It has been proven that both withdraw and deposit methods preserve this strengthened class
invariant. However, the proof is semi-automatic for both methods due to the need of quantifier
instantiation. In the following section we prepare a step-by-step guidance for interacting with
the KeY-ABS prover and accomplishing the proof.

Listing 6 Extended specification of the bank example (amountOfDepositNonNegative.key)

\absSource ‘‘.’’;

\module ‘‘Account’’;

\class ‘‘Account.AccountImpl’’;

\invariants(Seq historySV, Heap heapSV, ABSAnyInterface self) {

nonNegativeBalance : Account.AccountImpl {
int::select(heapSV, self, Account.AccountImpl::balance) >= 0

};

amountOfDepositNonNegative : Account.AccountImpl {
\forall HistoryLabel ev; (
\forall int i; ( i>= 0 & i<seqLen(historySV) −>

(ev = HistoryLabel::seqGet(historySV, i) &
(isInvocationEv(ev) | isInvocationREv(ev)) &

getMethod(ev) = Account.Account::deposit#ABS.StdLib.Int
−> int::seqGet(getArguments(ev), 0) >= 0 )

))
};

}

5.3 Step-by-step interactive proof

Interactive proof can be non-trivial and requires certain user experience. Depending on the
proof strategy, there are different ways to interact with the prover to close a proof. This section
will show some basic tips to interact with KeY-ABS through an example. A screencast of how
to prove the example is provided in the end of the section. Users can easily exploit the tool
further after fully understand this tutorial.

To begin with we need to find where to prune the proof and how to continue the proof from
there. To prune the proof means to select a node in the middle of the proof tree and then cut
off the whole subtrees below this node. In KeY-ABS this is done by clicking a node in the proof
tree and press the icon in the top bar of the window. A straight forward place to prune
the proof is the place in the proof tree right after KeY-ABS symbolically execute the whole
method body. This state is captured by the node of the form < n >: { } in the proof tree. The



symbol { } expresses that the method body is now empty and this reasoning rule removes the
empty modality box in the ABSDL formula. Note that there are several nodes of the same form
< n >: { }. We here choose the one closest to the root of the tree. We prune the proof right after
the node 28:{ }, because the current node will be pruned as well.

In Fig. 8 we show the proof obligation formula generated after the execution of deposit
method. Now we can clearly see that our goal is to prove the satisfaction of class invariant
CInv(history, heap, this) based on the updates updated by the method execution. This updates
captures the updated state of the field in the heap, where balance is increased by x_0_0. In
addition, the initial history sequence has been extended with an invocation reaction event and
a completion event capturing the starting and the termination of the depositmethod.

Figure 8: Prune the proof.

The automated proof search implemented in KeY-ABS can be interleaved with interactive rule
application The KeY-ABS prover has a graphical user interface that is built upon the idea of direct
manipulation. To apply a rule, the user first selects a focus of application by highlighting a (sub-
)formula or a (sub-)term in the goal sequent. The prover then offers a choice of rules applicable at
this focus. Rule schema variable instantiations are mostly inferred by matching. Accordingly,
now we move the mouse on the formula until both the updates and the class invariant are
highlighted. This step is shown in Fig. 9. Then we left-click the mouse and select a reasoning
rule called One Step Simplification. This reasoning rule substitutes the parameters of the CInv
predicate with the symbolic values provided by the updates. Then we highlight the whole CInv
predicate and apply the reasoning rule insertClassInvariantFor<Account.AccountImpl>
over the predicate. This step is shown in Fig. 10. This rule substitutes the history and the
object field balance in the class invariants with the symbolic values contained in the CInv
predicate. The substitution result is shown in Fig. 11.

The class invariant is a conjunction ofnonNegativeBalanceandamountOfDepositNonNegative.
Let’s prove them one by one. As the standard first-order-logic rule for conjunction at the right
side of an implication will cause a split of proof tree into two branches, one for each conjunct,

andRight
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆

the result of applying the rule andRight (Fig. 12) on the class invariant can be found in Fig. 13.

The first proof branch The first case is to prove that the balance is non-negative upon method
termination (shown in Fig. 13). Since we have an assumption that the class invariant holds
at the beginning of the method execution, we know that the method parameter of deposit is



Figure 9: One Step Simplification.

Figure 10: Insert class invariant.

Figure 11: Instantiated class invariant.



Figure 12: Rule andRight.

Figure 13: Branching in the proof tree.

non-negative and the balance is non-negative before increasing the value. Based on these two
assumptions, we should be able to close this proof branch. Detailed proof steps are described
below.

First we apply the rule insertClassInvariantFor<Account.AccountImpl> on the class
invariant predicate CInv at the left side of the implication. The class invariant predicate CInv
is written as the following:

CInv(seqConcat(history, seqSingleton(invocREv(caller_0, this, f uture,
Account.Account :: deposit#ABS.StdLib.Int, seqSingleton(x_0_0)))), heap, this)

This step is presented in Fig. 14. Next we apply the standard first-order-logic rule, i.e., andLeft
in KeY-ABS, on the class invariant.

andLeft
Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆

This rule rewrites the conjunction of two formulae on the left side of an implication into a list
of two formulae. This step is shown in Fig. 15.

Now we would like to use the assumption of amountOfDepositNonNegative. Since there are
quantifiers in amountOfDepositNonNegative invariant, we need to instantiate the quantified
variables. There are two reasoning rules which can be applied for instantiating quantified
variables. One is allLeft and another is allLeftHide.

allLeft
Γ,∀x.φ, [x/c]φ ` ∆

Γ,∀x.φ ` ∆
allLeftHide

Γ, [x/c]φ ` ∆

Γ,∀x.φ ` ∆



Figure 14: Insert class invariant at the left side of the implication.

Figure 15: Rule addLeft.



Figure 16: Rule allLeftHide.

The difference is that the former one keeps a copy of the highlighted universal quantified
formula in addition to an instantiated version. This is the standard reasoning rule for first-
order-logic while universal quantifier is at the left side of the implication. To keep the proof
formula compact, we choose to apply the reasoning rule allLeftHide, which hides the copy
of the original universal quantified formula. Note that by applying this rule a popup window
will show up. This step is shown in Fig. 16.

KeY-ABS pops up a window for users to type in a symbolic value that the quantified variable
should be instantiated to. Users can also select an existing term from the formula, drag and
drop it to the blank box in the window to instantiate the variable. But first we need to have
an idea about what we can instantiate the variables to. The amountOfDepositNonNegative
invariant contains two quantifiers: one for invocation events or invocation reaction events of the
depositmethod, and one for the index of the history sequence locating the event. That means
we need to apply allLeftHide rule twice. As we know the history at the beginning of the
method execution is the concatenation of initial history with an invocation reaction event of
the depositmethod shown below

seqConcat(history, seqSingleton(
invocREv(caller_0, this, f uture,Account.Account :: deposit#ABS.StdLib.Int, seqSingleton(x_0_0))))

we can instantiate variable ev to

invocREv(caller_0, this, f uture,Account.Account :: deposit#ABS.StdLib.Int, seqSingleton(x_0_0))

and variable i to seqLen(history), which is the length of the history sequence. This index
points out where the selected invocREv event locates. Note that the index of the first element
in the history sequence is 0. These instantiation steps are shown in Fig. 17 and Fig. 18.

Now we can close this proof branch by right-clicking the OPEN GOAL node and choosing
Apply Strategy.

The second proof branch The second branch shown in Fig. 19 is to prove that the method
parameter of deposit is non-negative upon method termination. This can easily be proved
because we have an assumption that the method parameter is non-negative at the beginning
of method execution. To achieve this, we first apply the reasoning rule allRight on the class



Figure 17: Instantiation of event variable ev.

Figure 18: Instantiation of index variable i.



Figure 19: Proof of Case 2.

invariant at the right side of the implication.

allRight
Γ ` [x/c]φ,∆

Γ ` ∀x.φ,∆

This is a standard first-order-logic rule which instantiates universal quantified variables at the
right side of an implication to fresh variables. Since there are two universal quantifiers, we
need to apply allRight rule twice. This step is shown in Fig. 20. The prover then automatically
instantiates the quantified variable ev to a fresh variable ev_0 and variable i to a fresh variable
i_0. The instantiated formula is shown in Fig. 21. Note that the fresh variables created by the
rule allRight are not necessarily ev_0 and i_0. It depends on how many proofs were done
before. The subscripts could be different.

Class invariant CInv at the left side of the implication should be expanded, and the rules
andLeft and allLeftHide are applied on the expanded class invariant. This procedure is the
same as the one for the first proof branch and is shown in Fig. 14 ∼ 16. Then we manually
instantiate the universal quantified variable ev to the fresh variable ev_0 and variable i to the
fresh variable i_0 at the left side of the implication. This step is shown in Fig. 22 and Fig. 23.
Note that the subscripts of the automatically generated fresh variables could be different. The
manual instantiation of the universal quantified variables at the left side of the implication here
should always be consistent with the generated ones at the right side of the implication.



Figure 20: Rule allRight.

Finally, we close the whole proof for the deposit method by clicking the green triangle
button at the top-left corner of the window. The proof result is shown in Fig. 24.

Screencast of the proof At http://folk.uio.no/crystald/deposit.mov a screencast show-
ing how to prove the depositmethod can be downloaded.

Now the readers can try to prove that withdrawmethod also preserves nonNegativeBalance
and amountOfDepositNonNegative such that the AccountImpl class preserves all class invari-
ants.

6 Conclusions and Further Reading

This tutorial presents the system workflow for the KeY-ABS theorem prover. It provides the
links for readers to download the tool and example. This tutorial is self-contained such that
the readers are able to reproduce the proof and obtain the basic knowledge of KeY-ABS. A
simple sequential program, a banking account example, is used in this tutorial to teach the
basic functionalities of KeY-ABS. For further reading, we recommend the following reading
list. The KeY book [1] lays the foundation of KeY-ABS, specifically for the logic system, the
symbolic execution engine and the taclets language for formulating reasoning rules. History-
based reasoning for ABS is presented in [2]. A tool paper of KeY-ABS is in [3]. For more
complex verification applications on unbounded concurrent ABS programs, one can read [4].

http://folk.uio.no/crystald/deposit.mov


Figure 21: Automatic instantiation.



Figure 22: Instantiation of ev.

Figure 23: Instantiation of i.



Figure 24: Close the proof for the deposit method.
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