
SYCO & aPET Tutorial
http://abs-models.org/syco-apet-tutorial/

Elvira Albert
Puri Arenas
Miguel Gómez-Zamalloa
Miguel Isabel

http://www.envisage-project.eu/

http://abs-models.org/syco-apet-tutorial/
http://www.envisage-project.eu/

Introduction

Writing correct concurrent programs is harder than writing sequential ones, because with concurrency
comes additional hazards not present in sequential programs such as race conditions, data races, deadlocks,
and livelocks. Therefore, software validation techniques urge especially in the context of concurrent
programming. Testing is the most widely used methodology for software validation. However, due to the
non-deterministic interleavings of processes, traditional testing for concurrent programs is not as effective
as for sequential programs. Systematic and exhaustive exploration of all interleavings is typically too
time-consuming and often computationally intractable. Thanks to the non-preemptive scheduling and
the absence of shared memory among different objects we have in ABS, it suffices to consider such non-
determinism only at release points, in order not to lose any behavior of the program. However, a naïve
systematic exploration of all possible choices still does not scale.

Two different families of techniques can help in mitigating such a state explosion problem: (i) Partial-
order reduction (POR) [9, 6] is a general theory that allows characterizing redundant derivations in equivalence
classes. State-of-the-art POR algorithms are able to detect redundant derivations dynamically during the
execution, and, allow generating only one derivation per equivalence class, avoiding a considerable number
of redundant explorations. (ii) A complementary approach to POR is to focus the search towards specific
behaviors of the model, avoiding, as much as possible, the exploration of derivations leading to non-
interesting behaviors. A particular case of this is deadlock-guided testing, where the execution is driven
towards potentially deadlock paths (while other paths are pruned).

The SYCO (resp. aPET) tool is a dynamic (resp. static) systematic testing tool for ABS concurrent objects
which includes state-of-the-art POR and deadlock-guided testing techniques.

Contents

1 General Overview 3
1.1 The SYCO Tool . 3
1.2 The aPET Tool . 3

2 SYCO: Step by Step 4
2.1 Using SYCO with default parameters . 5
2.2 How to understand the sequence diagrams . 6
2.3 Parameters of SYCO . 11
2.4 Deadlock-guided testing with SYCO . 11

3 aPET: Step by Step 12
3.1 Parameters of aPET . 13

4 Further Reading 16

Figure 1: SYCO architecture

1 General Overview

1.1 The SYCO Tool

SYCO is a systematic tester for ABS concurrent objects. Figure 1 shows its main architecture. Boxes with dash
lines are internal components of SYCO whereas boxes with regular lines are external components. The user
interacts with SYCO through its web interface which is integrated within the ABS collaboratory and is hence
provided by EasyInterface [8]. The SYCO engine receives an ABS program and a selection of parameters. The
ABS compiler compiles the program into an abstract-syntax-tree (AST) which is then transformed into the
SYCO intermediate representation (IR). The DPOR engine carries out the actual systematic testing process.
It comprises the ABS semantics, the DPOR algorithm of [1] and the stability and dependencies analyses
of [1]. The output manager then generates the output in the format which is required by EasyInterface,
including an XML file containing all the EasyInterface commands and actions and SVG diagrams. In
case deadlock-guided testing is applied, the DECO deadlock analyzer [7] is invoked, which returns a set of
potential deadlock cycles that are then fed to the DPOR engine to guide the testing process (discarding
non-deadlock executions) [?].

Section 2 details its usage. Essentially, once the input program is ready, either selected from the
available library of ABS programs or supplied by the user, the SYCO engine is run (with the selected
settings) and the output is obtained. As a result, SYCO outputs a set of executions. For each one, SYCO
shows the output state and the sequence of tasks/interleavings and concrete instructions of the execution
(highlighting the source code). SYCO also generates sequence diagrams for each execution. Such sequence
diagrams provide graphical and more comprehensive representations of execution traces. Essentially, they
show the task/object executing at each time of the simulation, the spawned asynchronous calls (with arrows
from caller to callee), and, the waiting and blocking dependencies. See Section 2 for details.

1.2 The aPET Tool

aPET is a static testing tool and test case generator forABS concurrent objects based on symbolic execution [5]. In
symbolic execution the program execution is simulated for possibly unknown inputs hence using symbolic
expressions for program variables. As a result, it produces a system of constraints over the inputs containing
the conditions to execute the different paths and the expressions computed for their outputs. Symbolic
execution has many applications, namely software verification, program comprehension and automatic test case
generation (TCG). In this latter context, symbolic execution produces, by construction, a (possibly infinite)
set of test cases, which satisfy the path-coverage criterion.

In the context of symbolic execution of concurrent programs, the above-mentioned problem of the non-
deterministic interleavings of processes, is added to the intrinsic non-determinism of symbolic execution
due to branching statements involving partially unknown data. It is therefore crucial to apply aggressive
POR techniques, and in many cases in practice, even to lose some interleavings and thus possibly sacrifice
full path-coverage. To this aim, [2] extends the POR techniques of [1] to the context of symbolic execution
and TCG. On the other hand, in order to ensure finiteness of the process, and, at the same time, obtain a

Figure 2: Collaboratory web Interface

meaningful set of test-cases, aPET includes the coverage/termination criteria for concurrent objects proposed
in [2]. Essentially it consists on limiting: the number of iterations of loops at the level of tasks, the task
switches allowed in each concurrent object, and, the concurrency units originated during symbolic execution
per program point.

The architecture of aPET is essentially the same as that of SYCO. Indeed, both tools share most of their
components, namely the ABS compiler, the AST-to-IR and part of the DPOR Engine and Output Manager.
The main differences are that the internal engine of aPET includes support for symbolic execution and its
termination criteria, and that the output manager includes support for TCG in different formats.

The usage of aPET is essentially as follows: given an input program and a selection of methods, the aPET
symbolic execution engine computes a set of test cases for the selected methods. Test cases can be given as
path constraints or, after a constraint solving procedure, as concrete test cases. Each test case includes the
input arguments and input state, and the output argument and output state. Section 3 details how to use
aPET with screenshots and provides information about the different parameters which can be set.

2 SYCO: Step by Step

In order to use SYCO we select Systematic testing (SYCO) from the pull-down menu of available tools as
shown in Figure 2. Our running example is shown in Figure 3 and available at the collaboratory here.
Method fact of class Fact computes the factorial of a number n in a distributed way so that each involved
object computes at most h multiplications. Let us suppose object o of class Fact is asked to compute
the factorial of n by means of a call o ! fact(n). Object o executes the task work(n,o.maxH) computing
n∗(n−1)∗ . . .∗(n−o.maxH1). Afterwards, the call delegate(n−o.maxH) delegates the rest of the computation to
another object. When an object is asked to compute the factorial of some n, smaller than its maxH, then the
call this ! work(n,n) computes directly the factorial of n and the result is reported to its caller by task report.

http://ei.abs-models.org:8082/clients/web/index.html?app=syco&file=/collaboratory/examples/TestCaseGeneration/Fact.abs

1 interface FactInt {
2 Unit fact(Int n);
3 Unit work(Int n, Int h);
4 Unit report(Int x);
5 Unit delegate(Int n);
6 }
7 interface RunnerInt {
8 Unit fact(Int n, Int h);
9 }

10 class Fact(Fact boss, int maxH) implements FactInt{
11 Int r = 1;
12 Unit fact(Int n){
13 if(n > this.maxH){
14 this!work(n,this.maxH);
15 this!delegate(n,this.maxH);
16 } else {
17 this!work(n,n);
18 this!report(1);
19 }
20 }
21 Unit delegate(Int n){
22 FactInt worker = new Fact(this,this.maxH);
23 worker!fact(n);
24 }

!

25 Unit work(Int n, Int h){
26 while(h>0){
27 this.r = this.r * n;
28 n = n-1;
29 h = h - 1;
30 }
31 }
32 Unit report(Int x){
33 this.r = this.r * x;
34 if(this.boss != null)
35 this.boss!report(this.r);
36 }
37 }
38 class Runner implements RunnerInt{
39 Unit fact(Int n, Int h){
40 FactInt f = new Fact(null,h);
41 f!fact(n);
42 }
43 }
44 {//main block
45 RunnerInt r = new Runner();
46 r!fact(5,2);
47 }

Figure 3: Running Example

The result is then reported back to the initial object in a chain of report tasks using field boss, which stores
the caller object. The computed result of each object is stored in field r. The provided main block just creates
a runner object r and calls r ! fact(5,2) to compute the factorial of 5, which will be stored in field r of the
initial Fact object. The expected result is hence 120. As we show later, the program has a bug, which is only
exploited in a concrete sequence of interleavings when at least three objects are involved.

If we click over Fact.abs, the code of the running example appears at the code area. Now, if we press
button Refresh Outline, the right-hand side with the class and module information is updated. The Clear
button cleans the console area. Optionally, the parameters of the selected testing tool can be configured
by clicking on Settings (details are given in Section 2.3). To execute the selected tool it is enough to click
Apply in the pulldown menu on the tool bar and the results are presented in the console area.

2.1 Using SYCO with default parameters

Let us perform a systematic testing of our running example with SYCO using default parameters. We just
select SYCO and press Apply. Note that systematic testing always targets the main block. Therefore, the
selection made in the outline view is ignored. The results are printed in the console area.

SYCO first prints the number of complete executions explored (in this case eight executions). Note that,
by default, an aggressive POR is applied. As we will see later, the number of executions without POR is 280.
Also, the most recent POR technique included in SYCO is able to obtain just two executions. SYCO then prints
the output state and the execution trace. The output state (in blue color) contains all the objects created
during the execution. Each object is represented as a term with three arguments: the object identifier, the
object type or class, and the final values of the object fields. For instance:

|��object(2,’Fact’,[field(boss,null),field(maxH,2),field(r,20)])

means that the final state contains an object identified by 2 of class Fact, whose fields boss, maxH and r

Figure 4: Execution of SYCO with default parameters

have null, 2 and 20 as values. Since we are computing the factorial of 5, and this object is the initial object,
its r field should end with value 120, instead of the obtained 20. This execution therefore reveals a bug in
the program

The execution trace (in red color) shows, for each time or macro-step of the execution, the object and
task executing at this time. If we click one time of the trace, the corresponding line in the source code is
highlighted (in yellow color) in the code area. This is shown in Figure 4 where the first time (|��’Time:
0, Object: main, Task: 0:main’) of the trace has been clicked.

2.2 How to understand the sequence diagrams

To see the sequence diagram of a concrete execution we click the text “Click here to see the sequence
diagram” (next to the execution number in the console view). Figure 5 shows the sequence diagram of the
first execution for our running example. At the left-hand side, a timeline is shown with the times of the
execution, in this case 13 times (0−12). Each vertical cluster corresponds to the activities performed by each
object, and each node corresponds to the task executing at the corresponding object in the corresponding
time. Objects are of the form class_id, where class is the object type and id is a unique object identifier.
Tasks are of the form id:method where id is a unique task identifier and method is the name of the method.
Nodes also indicate why the execution of the associated task stopped. Nodes in green color labeled with
return correspond to tasks that have finished their executions; nodes in orange color labeled with waiting
for taskId are tasks which have been suspended waiting for task taskId; and nodes in red color labeled

with blocked for taskId are tasks which block the object waiting for task taskId. Finally, arrows from
nodes to clusters indicate asynchronous calls or object creations.

Fi
gu

re
5:

A
bu

gg
y

ex
ec

ut
io

n
tr

ac
e

fo
r

th
e

ru
nn

in
g

ex
am

pl
e

Figure 6: A correct execution for the running example

In our running example, the trace corresponding to execution 1 is shown in Figure 5. Let us briefly
explain the diagram and the relations among the diagram, the code of the program (Figure 3) and the final
state computed for execution 1 (Figure 4 below). Time 0 corresponds to the execution of the main block
within the object identified as main_0. It creates a new object Runner_1 (RunnerInt r = new Runner()) and
spawns task 2:fact (Runner_1 ! fact(5,2)). In the final state, this adds the objects object(main,main,[])
and object(1,’Runner’,[]) respectively. Then, the block main_0 finishes its execution and it is marked

with return. During time 1, object Runner_1 executes the task 2:fact which creates the new object Fact_2
(FactInt f = new Fact(null,h)), spawns task 4:fact to compute Fact_2 ! fact(5) and finishes. The new
created object object(2,’Fact’,[field(boss,null),field(maxH,2),...]) appears in the final state.
At time 2, Fact_2 spawns tasks 6:work (Fact_2 ! work(5,2)) and 13:delegate (Fact_2 ! delegate(3))
and finishes. At time 3, the execution of task 13:delegate creates a new object Fact_3 (FactInt worker
= new Fact(Fact_2,Fact_2.maxH)) and spawns task 15:fact which corresponds to the computation of
Fact_3 ! fact(3). The execution of 13:delegate finishes and the corresponding green node is marked
with return. The new object object(3,’Fact’,[field(boss,ref(2)),field(maxH,2),...]) appears
in the final state. Time 4 is similar to time 2, but executing task 15:fact. Time 5 is similar to time
3, but executing 24:delegate, which creates the new object Fact_4, also appearing in the final state as
object(4,’Fact’, [field(boss,ref(3)), field(maxH,2),...])). At time 6, the execution of 26:fact,
which corresponds to the execution of Fact_4 ! fact(1), spawns tasks 28:work (Fact_4 ! work(1,1)) and
33:report (Fact_4 ! report(1)). At time 7, the execution of 33:report spawns task 35:report on object
Fact_3, i.e., Fact_3 ! report(1). At time 8, the execution of task 28:work finishes and the final state for
object Fact_4 is object(4,’Fact’, [field(boss,ref(3)),field(maxH,2),field(r,1)]). At time 9, task
35:report spawns task 37:report on object Fact_2 (Fact_2 ! report(1)). Time 10 executes 37:report and
finishes since the field boss of Fact_2 is null. At times 11 and 12, tasks 6:work (Fact_2 ! work(5,2))
and 17:work (Fact_3 ! work(3,2)) are executed completely, and thus the final states for objects Fact_2
and Fact_3 are, respectively, object(2,’Fact’,[field(boss,null),field(maxH,2),field(r,20)]) and
object(3,’Fact’, [field(boss,ref(2)), field(maxH,2),field(r,6)]).

Figures 6 and 7 show the result and sequence diagram of the third execution, in which we can observe
that the expected value 120 is obtained. If we make a comparison between the sequence diagrams of
executions 1 and 3, we can figure out that the problem in execution 1 originates on time 9, where the result
is reported before executing task 17:work. In the sequence diagram of execution 3 we can observe that
object Fact_3 reports the result after executing task 17 : work (see times 5 and 10).

Fi
gu

re
7:

D
ia

gr
am

of
co

rr
ec

te
xe

cu
ti

on
fo

r
th

e
ru

nn
in

g
ex

am
pl

e

Figure 8: The SYCO parameters

2.3 Parameters of SYCO

Up to now we have executed SYCO with default parameters. Pressing button Settings at the toolbar shows
the parameters window, which allows to configure the available parameters for each application. Figure 8
shows the parameters of SYCO, with default values. The following parameters can be set:

• Object selection policy. By default all objects from a state are selected non-deterministically on back-
tracking (option Non-deterministic). In case parameter Partial-order reduction below is enabled, only
the required objects are selected according to the POR theory (see [1]). The other value Round-robin
selects an object deterministically using a round-robin strategy.

• Task scheduling policy. It allows us to set the scheduling policy of objects. Available values are FIFO,
LIFO and Non-deterministic. The default value is Non-deterministic. Otherwise, SYCO performs
a deterministic simulation with the selected strategies.

• Partial-order reduction. It allows one to disable POR, by selecting value None, or to enable it with one
of the following three levels of precision, Naive dep. approx., Shared memory dep. (by default)
and Exact dep.. Option Naive dep. approx. only applies the POR object selection in [1] based
on stability, whereas option Shared memory dep. over-approximates the dependencies based on
shared-memory accesses of [1]. Finally, Exact dep. applies a recent and yet experimental DPOR
technique which detects dynamically context-sensitive and exact dependencies. In the example, 8
executions are obtained with POR based on shared-memory dependencies, whereas 18 are obtained
with the Naive POR and 280 if POR is disabled. Using our new technique to detect exact dependencies
we just get 2 executions. This illustrates the effectiveness of the available POR techniques.

• Deadlock-guided testing. It allows us to enable/disable deadlock-guided testing. By default it is disabled.
If it is enabled, the testing process is guided towards deadlocks, discarding non-deadlock executions,
with the corresponding state space reduction. This is useful in the context of deadlock detection and
debugging. See Section 2.4 above.

2.4 Deadlock-guided testing with SYCO

As already mentioned, SYCO includes the deadlock-guided testing approach of [?], in which the execution
is driven towards potential deadlock paths discarding deadlock-free executions. If we enable Deadlock

48 {\\main block
49 DB db = new DBImp(DataSomething);
50 Worker w = new WorkerImp();
51 db!register(w);
52 w!work(db);
53 }
54 class DBImp(Data dt) implements DB{
55 Worker cl = null;
56 void register(Worker w){
57 Fut〈Int〉 f = w!ping(5);
58 if (f.get == 5) cl = w;
59 }

60 Data getData(Worker w){
61 if (cl == w) return data;
62 else return DataNull;
63 }
64 }// end class DBImp
65 class WorkerImp() implements Worker{
66 Data data;
67 Unit work(DB db){
68 Fut〈Data〉 f = db!getData(this);
69 data = f.get;
70 }
71 Int ping(Int n){return n;}
72 }// end of class WorkerImp

Figure 9: An example with deadlock

Guided Testing for our running example, we get printed Number of executions: 0 as result in the
console, which means that the program is deadlock-free.

Let us consider the program in Figure 9 (available here) which simulates a simple communication
protocol between a database and a worker. The main block creates the two objects and invokes the methods
register and work respectively. The work method of the worker simply accesses the database (invoking
asynchronously method getData) and then blocks until it gets the result, which is assigned to its data field.
The register method of the database, first checks that the worker is online (invoking asynchronously
method ping), then blocks until it gets the result, and finally it registers the worker by storing its reference
in its cl field. Method getData of the database returns its data field if the caller worker is registered,
otherwise it returns DataNull.

Depending on the sequence of interleavings, the execution of this program can finish: (i) as expected,
i.e., with w.data having the same value as db.data, (ii) with w.data = DataNull, or, (iii) in a deadlock.
Case (i) happens when the worker is registered in the database before getData is executed. Case (ii) happens
when getData is executed before assigning the worker as the database client. A deadlock is produced if
both register and work start executing before getData and ping. With POR disabled, SYCO produces 6
executions for the example in Figure 9, which cover all possible task interleavings that may occur. SYCO
reports that two executions are deadlock executions corresponding to sequences main→ register→work
and main→work→ register, which correspond to scenario (iii). Within the remaining four executions,
two of them correspond to scenario (i) and the other two to scenario (ii). If we enable Deadlock-guided
testing, we obtain just the two deadlock executions which are shown in Figure 10. Looking at the sequence
diagram of the first execution (Figure 11 up), we can observe a deadlock situation, since both DBimp_1 and
WorkerImp_2 are blocked and, as we can see, they are squared in red color. During time 1, DBimp_1 gets
blocked waiting for WorkerImp_2 to execute task 4:ping. During the next time, object WorkerImp_2, instead
of executing task 4:ping, it executes task 5:work, getting blocked waiting for DBimp_1 to execute 6:getData.
Therefore, none of the objects can make any progress. Both tasks are highlighted with red solid edges to
indicate that these are the ones responsible for the deadlock. The second execution (see Figure 11 down) is
similar but changing the execution order between tasks 3:register and 5:work.

3 aPET: Step by Step

This section illustrates the usage of aPET using our running example. In this case we select Test case
generation (aPET) from the pull down menu in the toolbar. In contrast to SYCO, since aPET performs
symbolic execution, it can be applied over any method, possibly containing input arguments. Symbolic
execution produces as a result the conditions over the input arguments and input state, or directly concrete
values satisfying those conditions, to execute the different execution paths. Also, for each considered path,

http://ei.abs-models.org:8082/clients/web/index.html?app=syco&file=/collaboratory/examples/TestCaseGeneration/DBProtocol.abs

Figure 10: Deadlock-guided testing on the Database example

the expressions to compute the corresponding outputs, or concrete outputs satisfying them, are generated.
Methods to which we want to apply aPET are selected in the outline view.

Let us select method fact of class Runner, and generate test cases for it with aPET using default
parameters. For this, we just click over the Apply button and in the console area we can observe that 5 test
cases have been generated. Let us focus on the first test case which is shown in Figure 12.

• In the Input section, Args stands for the value of the input arguments; in this case ref(A), 4 and 1 are
the initial values computed for the input parameters this, n and h. State shows the input state. It
contains only one object (the caller object) of class Runner identified by A.

• The Output section contains the Return value, followed by the final state. The return type of method
fact is Unit, and, the final state contains 5 different objects, where the object identified by 0 contains
the value 24 in its field r, which is the expected result for this input (4).

aPET also generates the traces associated with each test case and the corresponding sequence diagrams
to graphically visualize the traces. They are displayed by clicking on “Click here to see the sequence
diagram” in each test case. As in SYCO, if we click over one time point of the trace, the corresponding line
in the source code is highlighted (in yellow color) in the code area.

3.1 Parameters of aPET

The parameters available for aPET are shown in Figure 13, with their corresponding default values. In the
following we describe the meaning and available values for the different parameters:

Concrete test-cases or path-constraints. The result of each feasible execution path in the symbolic
execution can be given in the form of (unresolved) path constraints (value Path constraints), or in
the form of a concrete test case (value Concrete tests), where arbitrary concrete values satisfying
the constraints are generated. Value Hybrid generates concrete data only for functional data, leaving

Figure 11: Sequence diagrams of deadlock executions

Figure 12: TCG with aPET for method fact

path constraints involving numeric variables. As an example, let us consider the TCG with aPET of
method report of class Fact with value Path constraints. The first computed test case is shown in
the screenshot below:

which can be read as: the initial and final states contain three objects A, C and F such that the boss of
A is C, the boss of C is F and the boss of F is null. Field maxH of the objects in the initial state remain
the same in the final state. If we look at field r in the final state, the following associated constraints
are obtained:

rA
f
rA
i
∗B

rC
f
rC
i
∗rA
i
∗B

rF
f
rF
i
∗rC
i
∗rA
i
∗B

where ro
f

(resp. ro
i
) stands for the final value (initial value) of field r of object o, o ∈ {A,C,F}.

Range of numbers for concrete test cases. It allows specifying the domain for numeric variables and

Figure 13: The aPET parameters

it is given in the format Min..Max. This option is only applicable when that concrete test-cases are
generated.

Termination crit.: Loop iterations. The specified number (by default 1) is used as a limit on the maximum
number of loop iterations or function recursive calls which are allowed in symbolic execution.

Termination crit.: Task switchings per object. The specified number (by default 8) is used as a limit on
the maximum number of task switchings per object which are allowed in symbolic execution.

Termination crit.: Objects originated per program point. The specified number (by default 2) is used as a
limit on the maximum number of objects originated per program point which are allowed in symbolic
execution.

Parameters Object selection policy, Task scheduling Policy, Partial-order reduction and Global timeout have
the same meaning as in SYCO (see Section 2.3). The first two have however different default values in aPET,
namely Round-robin, and FIFO respectively. This is because, in the context of symbolic execution, it is
much more likely to run into state explosion problems with non-deterministic schedulings.

Let us set the task scheduling to LIFO and run again aPET for method fact. We also get five test cases,
but in this case, the first two test cases exploit the error reported in Section 2. E.g., in the first test case (see
Figure 14), method fact is called with values 4 and 1 resp., and 4 is obtained as a result. If we have a look
at the sequence diagram, it could be observed that the problem is similar to that shown in Figure 5.

Finally, if we set both scheduling parameters to Non-deterministic, we get 32 test cases, many of which
exploit the same error.

4 Further Reading

The technical details which describe the dynamic and static methods used by SYCO and aPET can be found
in the following papers, which have been published along the duration of the ENVISAGE project:

Figure 14: First test case obtained with LIFO scheduling

• SFM’14 [3]: This tutorial paper provides a comprehensive description of a symbolic execution mech-
anism used for static testing, and the main extensions performed in a test case generation tool for
sequential programs in order to extend it to testing ABS models.

• FORTE’14 [1]: This work presents novel POR mechanisms and strategies for effectively testing ABS
models.

• ATVA’15 [2]: This paper extends the approach for dynamic testing of [1] to the context of static testing
and test case generation.

• STTT’15 [10]: This article shows by means of a case study (developed by Fredhopper) how the test
case generation process is performed on ABS models and how it can be combined with other testing
and runtime-checking methodologies.

• CC’16 [4]: This tool demonstration paper overviews the SYCO tool for testing systematically ABS
models.

• iFM’16 [?]: Our most recent work guides the testing process towards deadlock traces so that we can
provide a detailed description of the task scheduling and program state in deadlock executions. For
this, we use a static deadlock analyzer which provides potential deadlock cycles that are used by the
testing tool to discard deadlock-free paths.

References

[1] Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Actor- and Task-Selection Strategies for
Pruning Redundant State-Exploration in Testing. In Erika Ábrahám and Catuscia Palamidessi, editors,
34th IFIP International Conference on Formal Techniques for Distributed Objects, Components and Systems
(FORTE 2014), volume 8461 of Lecture Notes in Computer Science, pages 49–65. Springer-Verlag, 2014.

[2] Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Test Case Generation of Actor Systems. In
13th International Symposium on Automated Technology for Verification and Analysis, ATVA 2015. Proceed-
ings, volume 9364 of Lecture Notes in Computer Science, pages 259–275. Springer-Verlag, 2015.

[3] Elvira Albert, Puri Arenas, Miguel Gómez-Zamalloa, and Jose Miguel Rojas. Test Case Generation by
Symbolic Execution: Basic Concepts, a CLP-Based Instance, and Actor-Based Concurrency. In Formal
Methods for Executable Software Models, volume 8483 of Lecture Notes in Computer Science, pages 263–309.
Springer-Verlag, 2014.

[4] Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. SYCO: A systematic testing tool for
concurrent objects. In Ayal Zaks and Manuel V. Hermenegildo, editors, 25th International Conference
on Compiler Construction (CC’16), pages 269–270. ACM, 2016.

[5] L. A. Clarke. A System to Generate Test Data and Symbolically Execute Programs. IEEE Transactions
on Software Engineering, 2(3):215–222, 1976.

[6] Javier Esparza. Model checking using net unfoldings. Sci. Comput. Program., 23(2-3):151–195, 1994.

[7] Antonio Flores-Montoya, Elvira Albert, and Samir Genaim. May-happen-in-parallel based deadlock
analysis for concurrent objects. In Proc. FORTE/FMOODS 2013, volume 7892 of Lecture Notes in Computer
Science, pages 273–288. Springer-Verlag, 2013.

[8] S. Genaim and J. Doménech. The EasyInterface Framework, 2015.
http://github.com/abstools/easyinterface.

[9] Patrice Godefroid. Using partial orders to improve automatic verification methods. In Proc. of CAV,
volume 531 of Lecture Notes in Computer Science, pages 176–185. Springer, 1991.

[10] Peter Y. H. Wong, Richard Bubel, Frank S. de Boer, Miguel Gómez-Zamalloa, Stijn de Gouw, Reiner
Hähnle, Karl Meinke, and Muddassar Azam Sindhu. Testing Abstract Behavioral Specifications.
Journal on Software Tools for Technology Transfer, 17(1):107–119, 2015.

	General Overview
	The SYCO Tool
	The aPET Tool

	SYCO: Step by Step
	Using SYCO with default parameters
	How to understand the sequence diagrams
	Parameters of SYCO
	Deadlock-guided testing with SYCO

	aPET: Step by Step
	Parameters of aPET

	Further Reading

